11 research outputs found

    Subsystems for future access networks

    Get PDF
    Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks

    SARDANA: an all-optical access-metro WDM/TDM-PON

    Get PDF
    A new optical access network, named “Scalable Advanced Ring-based passive Dense Access Network Architecture” (SARDANA), is presented. It transparently integrates WDM metro and TDM PON access technologies, implementing ring protection, 100 km reach and up to 1024 users served at 10 Gb/s, with passive highly-shared infrastructure. The introduced innovations are hybrid ring/tree WDM/TDM Passive Optical Network (PON) architecture; a resilient remote node (RN), which is distantly pumped from the Optical Line Terminal (OLT); and a reflective ONU (Optical Network Unit); as well as an enhanced Medium Access Control (MAC) protocol.Postprint (published version

    SARDANA: an all-optical access-metro WDM/TDM-PON

    No full text
    A new optical access network, named “Scalable Advanced Ring-based passive Dense Access Network Architecture” (SARDANA), is presented. It transparently integrates WDM metro and TDM PON access technologies, implementing ring protection, 100 km reach and up to 1024 users served at 10 Gb/s, with passive highly-shared infrastructure. The introduced innovations are hybrid ring/tree WDM/TDM Passive Optical Network (PON) architecture; a resilient remote node (RN), which is distantly pumped from the Optical Line Terminal (OLT); and a reflective ONU (Optical Network Unit); as well as an enhanced Medium Access Control (MAC) protocol

    SARDANA: an all-optical access-metro WDM/TDM-PON

    No full text
    A new optical access network, named “Scalable Advanced Ring-based passive Dense Access Network Architecture” (SARDANA), is presented. It transparently integrates WDM metro and TDM PON access technologies, implementing ring protection, 100 km reach and up to 1024 users served at 10 Gb/s, with passive highly-shared infrastructure. The introduced innovations are hybrid ring/tree WDM/TDM Passive Optical Network (PON) architecture; a resilient remote node (RN), which is distantly pumped from the Optical Line Terminal (OLT); and a reflective ONU (Optical Network Unit); as well as an enhanced Medium Access Control (MAC) protocol

    Demonstration and field trial of a resilient hybrid NG-PON test-bed

    No full text
    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results. (C) 2014 Elsevier Inc. All rights reserved.Peer Reviewe

    Demonstration and field trial of a resilient hybrid NG-PON test-bed

    No full text
    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results. (C) 2014 Elsevier Inc. All rights reserved.Peer Reviewe
    corecore